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1 IntroductionThe leapfrog method is a commonly used second-order method for solving di�erentialequations (see, for example, [11, pp. 53 �.]). Let Z(t) and Z(t� 1) denote the currentand previous state of a time-dependent system, respectively. Except for possibly theinitial steps, a leapfrog scheme computes the state Z(t + 1) at the next time step asZ(t + 1) = H(Z(t); Z(t� 1);W ); (1)where H is the nonlinear operator advancing the system state. and W are systemparameters that are not time-dependent. That is, the code has the structure shown inFigure 1. Initialize Z(0) and W .Compute Z(1).for t = 1 to T � 1 doZ(t+ 1) = H(Z(t); Z(t � 1);W );end doFigure 1: Schematic of a Leapfrog SchemeIn applications such as parameter identi�cation one may be interested in dZ(T )dX , whereT is the �nal time step and X denote the variables whose derivatives one is interestedin, typically a subset of the initial inputs of the model. Using automatic di�erentiation(AD) tools, we can easily generate derivative code to compute dZ(T )dX . A discussionof the various approaches to AD can be found in [2, 10] and an overview of currentlyavailable AD tools at URL http://www.mcs.anl.gov/Projects/autodiff/AD Tools.These tools will generate code that computes accurate derivatives and it will be rea-sonable e�cient given the fact that no knowledge of the underlying problem was usedin generating the derivative code. As this article will show, however, we can favorablyexploit the structure in typical PDE-based computations arising from the sparsity of theunderlying operators in the use of AD tools.To illustrate, we let Z 2 IRn;W 2 IRp, and let X 2 IRs; X � [Z(0);W ]; s � n+p, denotethe variables with respect to which we are di�erentiating. Tools such as ADIFOR [5]or ADIC [8], or any other tool that is based mainly on the so-called forward mode ofautomatic di�erentiation can compute dZ(T )dX at a cost on the order of s times that ofjust computing Z(T ) (in terms of both runtime and memory) by maintaining derivativesof program variables with respect to X. 2



To motivate how we can do better, we di�erentiate (1) and obtaindZ(t + 1)dX = @ H@ Z(t) � dZ(t)dX + @ H@ Z(t � 1) � dZ(t� 1)dX + @ H@W � dWdX ; (2)where all partial derivatives of H are evaluated at (Z(t); Z(t � 1);W ). Typically, thematrices @ H@ Z(t) and @ H@ Z(t� 1) are sparse due to the local nature of the stencil employedin H, and one can exploit this fact to compute them inexpensively using forward-modebased AD tools [1, 7, 9]. Thus, if we use the aforementioned AD tools to (cheaply)compute @ H@ Z(t) and @ H@ Z(t� 1) , and then form dZ(t+ 1)dX through a series of matrix-matrix multiplications, we may well come out ahead.This article is structured as follows. In the next section, we review the capabilities ofcurrent forward-mode-based AD tools with respect to computing arbitrary directionalderivatives and show how chain rule associativity allows us to exploit intermediate spar-sity in the problem. In section 3, we introduce a 2-D shallow water equation modelproblem [12, 13]. In Section 4, we present experimental results obtained with this code,using ADIFOR-generated derivative code on an IBM RS/6000 and Sun SPARCstationplatforms. Lastly, we summarize our results.2 Stencil-Induced Intermediate SparsityAutomatic di�erentiation (AD) is a technique for augmenting codes with statements forthe computation of derivatives. Compared with other approaches for computing deriva-tives (e.g., by hand, divided di�erences, or symbolic approaches), it provides guaranteedaccuracy, ease of use, and computational e�ciency. The ADIFOR [4, 5] and ADIC [8]tools for Fortran and ANSI-C, respectively, directly generate derivative code (in Fortranor ANSI-C) that, given a user's speci�cation of dependent and independent variables,computes the partial derivatives of all of the speci�ed dependent variables with respectto all of the speci�ed independent variables, in addition to the original result. As dis-cussed in [5], the so-called forward mode of automatic di�erentiation that underlies thesetools allows not only the computation of the full Jacobian J associated with the chosendependent and independent variables, but any set of directional derivatives J � S.Examples of the resulting 
exibility in the use of the generated derivative code are shownin [6], but one particular use is that of exploiting sparsity. For example, to computea Jacobian J with the following structure (symbols denote nonzeros, and zeros are not3



shown), J = 0BBBB@ 

 34 34 24 2 1CCCCA ;we can exploit the fact that columns 1 and 2 and columns 3 and 4 have nonzeros indisjoint row positions. By initializing S asS = 0BB@ 1 01 00 10 1 1CCA :we compute a so-called compressed version of J at roughly half the cost compared withthat induced by setting S to a 4�4 identity. In general, the groups of columns that canbe grouped together can be identi�ed via a graph-coloring approach. This \compressedJacobian" approach has been used successfully in large-scale optimization [1, 7].An alternative approach to exploiting sparsity is to employ sparse data structures for thederivative objects in the AD-generated code. The SparsLinC library, which is integratedwith the ADIFOR and ADIC tools, provides this functionality, and has been successfullyemployed in large-scale optimization [3, 7].Let us now assume that, using a forward-mode-based AD tool, we have generated fromthe original code shown in Figure 1 a new code to compute derivatives of Z(T ) withrespect to Z(0) and W . A schematic of this code is shown in Figure 2. We call this the\black-box approach."Initialize Z(0), W , dZ(0)dX , and dWdX .Compute [Z(1); d Z(1)dX ].for t = 1 to T � 1 do[Z(t+ 1); d Z(t+ 1)dX ] = g H(Z(t); d Z(t)dX ;Z(t� 1); d Z(t� 1)dX ;W; dWdX );end doFigure 2: Schematic of an Automatically Di�erentiated Leapfrog SchemeIn particular, a derivative-augmented version g H of H was generated:[Z(t + 1); g Z(t+ 1)] = g H(Z(t); g Z(t); Z(t � 1); g Z(t � 1);W; g W ): (3)4



The g H routine computes both Z(t+ 1) as in (1) andg Z(t+ 1) = @ H@ Z(t) � g Z(t) + @ H@ Z(t� 1) � g Z(t � 1) + @ H@W � g W; (4)where all partial derivatives are evaluated at (Z(t); Z(t� 1);W ).The input derivative matrices g Z(0) and g W are usually referred to as \seed matri-ces," as their initialization determines what kind of (directional) derivatives is beingcomputed. Let Ii�j and 0i�j denote an i � j identity and null matrix, respectively. Ifwe were to initializeg Z(0) = � In�n ; 0n�p � and g W = � 0p�n ; Ip�p � (5)at the beginning of the code in Figure 2, upon completion we would have obtainedg Z(T ) = � dZ(T )dZ(0) ; d Z(T )dW �at a cost that would be O(n+ p) times that of computing Z(T ) itself.In general, let us assume that the computation of H takes fH 
ops and O(2 � n + p)words of storage for every time step (typically, the state is only stored for the currentand previous time step). Then, ignoring the startup cost in time step 0, for any subsetX of s variables from the set of potential independent variables, a tool such as ADIFORor ADIC can compute dZ(T )dX with O(s � T � fH ) 
ops and O(s � (2 � n+ p)) words ofstorage overall.In typical stencil-based computations, the timestepping operator H is of a localizednature: a particular gridpoint depends on its own value and the value of some of itsneighbors at the current and previous time step. As a consequence, the Jacobians@ H@ Z(t) and @ H@ Z(t � 1) will be sparse.If we set g Z(t) = (In�n; 0n�n; 0n�p)g Z(t� 1) = (0n�n; In�n; 0n�p) (6)g W = (0p�n; 0p�n; Ip�p)then the invocation ofg H (Z(t); g Z(t); Z(t� 1); g Z(t� 1);W; g W )computes 2n+ p derivatives and returnsg Z(t+ 1) = � @ H@ Z(t) ; @ H@ Z(t � 1) ; @ H@W � :5



If we exploited sparsity in a transparent fashion as is done with SparsLinC, for example,the cost of this computation will not be 2n + p times that of computing H, but rather� that of computing H, where � does not depend on n, but rather on the size of thestencil. In the sequel, we call this approach the \SparsLinC approach."Alternatively, let S1 and S2 be suitably chosen seed matrices to compute compressedversions of @ H@ Z(t) and @ H@ Z(t � 1) with �1 and �2 columns, respectively. Then we ini-tialize g Z(t) = �S1n��1 ; 0n��2; 0n�p�g Z(t � 1) = �0n��1 ; S2n��2; 0n�p� (7)g W = (0p��1 ; 0p��2 ; Ip�p) :Upon return from g H, the �rst �1 columns of g Z(t + 1) will contain a compressedversion of @ H@ Z(t) , the second �2 columns a compressed version of @ H@ Z(t � 1) , and thelast p columns @ H@W . The cost for this approach is � that of computing H, where� = �1 + �2 + p. In the sequel, we call this approach the \compressed approach."Independent of how @ H@ Z(t) ; @ H@ Z(t� 1) and @ H@ W were computed, dZ(t+ 1)dX is thencomputed with three matrix-matrix multiplications using the already known quantitiesdZ(t)dX , dZ(t� 1)dX , and dWdX . The resulting algorithm is shown in Figure 3 and we callthis approach the \intermediate sparsity" approach.We note the following:� Using Alternative 1, Step 1 requires O(T � � � fH ) 
ops and O(� � (2 � n + p))words of storage. Using Alternative 2, the cost of Step 1 is O(T � � � fH ) 
opsand O(� � (2 � n + p)) words of storage. Typically, � � �, and the number of
oating-point operations expended for the computation of H is proportional to n.Thus, the 
oating-point cost of computing the time-step derivatives scales withT � n, whereas the memory requirements are O(n). This cost does not depend onthe total number s of derivatives dZ(T )dX that we are computing. Independent ofwhat overall derivatives are desired, we always compute derivatives with respectto Z(t); Z(t � 1); and W at every time step.� Both @ H@ Z(t) � dZ(t)dX and @ H@ Z(t� 1) � dZ(t� 1)dX are, in general, multiplications ofa sparse matrix of size n � n with a dense matrix of size n � s. Thus, the costof this step depends, in addition to n, on the number of nonzeros in @ H@ Z(t) and6



Initialize Z(0), W , dZ(0)dX , and dWdX .Compute [Z(1); d Z(1)dX ].for t = 1 to T � 1 doStep 1: Compute @ H@ Z(t) ; @ H@ Z(t� 1) , and @ H@Wvia an invocation of g H geared toward exploiting sparsity.Step 2: Compute dZ(t+ 1)dX via a matrix-matrix multiplication:dZ(t+ 1)dX = @ H@ Z(t) � dZ(t)dX + @ H@ Z(t � 1) � dZ(t� 1)dX + @ H@ W � dWdX/* NOTE: This step assumes proper implementations of the multiplicationof a sparse matrix by a dense matrix. */end doFigure 3: Schematic of a Di�erentiated Leapfrog Scheme Exploiting Intermediate Spar-sity @ H@ Z(t� 1) , the size n of Z, and the number s of derivatives in dZ(T )dX and its
oating-point complexity scales with T � n � s. However, it does not depend onfH .� For this scheme to lead to computational improvements, the cost of the matrix-matrix multiply must not dominate the overall computational cost. This will bethe case if su�cient e�ort is expended in the stencil computation (thus leading toa sizable fH ).� The exploitation of intermediate sparsity only makes sense when � and � aresmall compared to s. In this case, we also expect some storage savings because theintermediate sparsity approach requires less storage for the derivatives of variablesinternal to H.3 A 2-D Shallow Water Equation Model ProblemTo illustrate the issues discussed previously, we employ a 2-D shallow water equationsmodel problem [12, 13]. This code is simple, yet exhibits the characteristic featureswe based our algorithmic suggestions on, namely, a leapfrog method as time propa-gator, and a stencil-based propagation operator. In this particular example, any row7



of � @ H@ Z(t) ; @ H@ Z(t� 1) ; @ H@W � has at most 13 nonzeros. The nonzero structure of thismatrix is shown in Figure 4 for n = 363 and s = 4. The total number of nonzerosin the matrix is 3,101. As for @ H@ Z(t� 1) , it is essentially diagonal, with corner pointsattributing o�-diagonal entries.
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mediate sparsity is never more than 13, the maximum number of nonzeros per row of� @ H@ Z(t) ; @ H@ Z(t� 1) ; @ H@W �, and structurally, except for the very �rst time step, thesame computation takes place.
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Figure 6: Nonzero Entries in Derivative Vectors over time in the \Black-Box" and\Intermediate Sparsity" Approach4 Experimental ResultsWe compared the approach suggested with a \black-box" application of ADIFOR onSun SPARCstation 5 and an IBM RS/6000 workstation platform. For the problemsshown in Table 1, we computed s = n+ p derivatives with respect to Z(0) and W (theseeding suggested in equation (5) for 60 time steps.Table 1: Shallow Water Equations Model ProblemsGrid Size n p11� 11 3 � 11 � 11 = 363 416� 16 3 � 16 � 16 = 768 421� 21 3 � 21 � 21 = 1323 4We compute the sparse Jacobian shown in Figure 4 using SparsLinC or, alternatively,using SparsLinC in the �rst time step to determine the sparsity structure and then usingthe compressed Jacobian approach in subsequent time steps. The latter approach isfeasible here because the sparsity pattern does not change (continuous use of SparsLinCcould accommodate varying sparsity patterns). Table 2 shows the overall runtime of10



the black-box ADIFOR approach, the time spent by the intermediate sparsity approachin the computation of the sparse Jacobian using either the SparsLinC or compressedJacobian approach, and the matrix-matrix accumulation. The total runtime of theintermediate sparsity approach is the sum of the matrix-matrixmultiply time and eitherthe SparsLinC or compressed Jacobian entry. Table 3 contains a summary of the memoryrequirements of these runs (the numbers for the IBM and Sun platforms are very similar).Table 2: Runtime for Shallow Water Equations Model Problems (in seconds)IBM RS/6000 SPARCstation11� 11 16� 16 21� 21 11� 11Black-Box ADIFOR 4.24 36.68 71.98 26.63SparsLinC 4.90 17.77 42.98 12.26Compressed Jacobian 1.93 8.70 21.51 6.55Matrix-Matrix Mult. 8.03 38.66 119.32 19.24Table 3: Memory Requirements for Shallow Water Equations Model Problems (inMbytes) 11� 11 16� 16 21� 21Black-Box ADIFOR 4.70 18.82 53.31SparsLinC 3.72 13.61 37.82Compressed Jacobian 3.85 13.84 38.16We observe that except on the Sun SPARCstation, the intermediate sparsity scheme doesnot produce any runtime improvements overall, since the matrix-matrix multiplicationcost dominates overall cost. In our experiments, we employed a standard sparse matrix-vector multiply kernel written in Fortran as well as an ESSL library routine on theIBM system but found little impact on performance. We also see that the intermediatesparsity scheme requires less memory, since data internal to H require shorter gradients.In all cases, derivatives produced with the various schemes agreed to machine precision.The disappointing performance of the intermediate sparsity scheme in this particularcase is not really surprising. We compute a large number s of derivatives, and theshallow water equations solver is based on a �ve-point stencil and updates the eastand west wind components as well as the geopotential at a cost of only 59 
ops pergridpoint. To simulate performance for a computationallymore intensive problem, wherethe computation of the sparse Jacobian corresponding to one time step required morework, we executed the code for one time step from 1 (the original problem) to 16 times,thereby increasing the computational weight of the stencil by a factor of up to 16 while11



keeping the structure of the resulting Jacobian unchanged. That is, the 
oating-pointcost of both black-box ADIFOR and the Jacobian associated with a particular time stepwill increase by the number of repetition, while the cost of the matrix-matrix multiplyas well as the memory requirements of the code remains unchanged. The resultingcomputational behavior is shown in Figures 7 and 8. Speedup here is ratio of CPU timeof the black-box ADIFOR approach versus the CPU time of the intermediate sparsityapproach.
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5 ConclusionsIn this article, we considered the di�erentiation of a leapfrog scheme, a commonly usedsecond-order method for solving di�erential equations. We employed the associativityof the chain rule to exploit the sparsity of the di�erential operator at an individualtime step and derived a derivative accumulation scheme that combines a derivativecode generated by automatic di�erentiation for the time step update with an explicitmatrix-matrix multiply harness that implements the chain rule at a one-timestep level.Experimental results with a shallow water model problem illustrated this approach andalso showed that this approach could signi�cantly improve overall performance if theone-timestep update has su�cient computational weight to make up for the cost of thematrix-matrix multiply. We emphasize that the computational harness thus derivedis generic | we assumed only that the Jacobian associated with one particular timestep is sparse. The coding complexity of the computation occurring in one particulartime step is irrelevant, as this part is handled by automatic di�erentiation. In fact, amore complicated model will likely lead to a more favorable balance between the matrix-matrix multiply and the computation of the Jacobian associated with a particular timestep.AcknowledgmentsWe thank David Zhi Wang of the Center for Analysis and Prediction of Storms at theUniversity of Oklahoma for providing us with the code for the shallow water equationmodel.References[1] Brett Averick, Jorge Mor�e, Christian Bischof, Alan Carle, and Andreas Griewank.Computing large sparse Jacobian matrices using automatic di�erentiation. SIAMJournal on Scienti�c Computing, 15(2):285{294, 1994.[2] Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank. Compu-tational Di�erentiation: Techniques, Applications, and Tools. SIAM, Philadelphia,1996.[3] Christian Bischof, Ali Bouaricha, Peyvand Khademi, and Jorge Mor�e. Comput-ing gradients in large-scale optimization using automatic di�erentiation. PreprintMCS-P488-0195, Mathematics and Computer Science Division, Argonne NationalLaboratory, 1995. To appear in ORSA Journal of Computing.13
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